First-Principles Investigation of Perfect and Diffuse Anti-Phase Boundaries in HCP-Based Ti-Al Alloys
نویسنده
چکیده
First-principles thermodynamic models based on the cluster expansion formalism, monte-carlo simulations and quantum-mechanical total energy calculations are employed to compute short-range-order parameters and diffuse-antiphase-boundary energies in hcp-based α-Ti-Al alloys. Our calculations unambiguously reveal a substantial amount of SRO is present in α-Ti-6 Al and that, at typical processing temperatures concentrations, the DAPB energies associated with a single dislocation slip can reach 25 mJ/m. We find very little anisotropy between the energies of DAPBs lying in the basal and prism planes. Perfect antiphase boundaries in DO19 ordered Ti3Al are also investigated and their interfacial energies, interfacial stresses and local displacements are calculated from first principles through direct supercell calculations. Our results are discussed in light of mechanical property measurements and deformation microstructure strudies in α Ti-Al alloys.
منابع مشابه
Critical stress for the bcc–hcp martensite nucleation in Ti–6.25at.%Ta and Ti–6.25at.%Nb alloys
Martensitic transformation is an important deformation mechanism in titanium alloys. Using density functional theory calculations, we establish the lattice constants and the associated energetics of the bcc–hcp transformation in Ti–6.25at.%Ta and Ti–6.25at.%Nb alloys. We present a bcc–hcp nucleation model based on the Peierls Nabarro formalism, incorporating the elastic strain energy of the dis...
متن کاملFirst-Principles Investigation of Density of States and Electron Density in Wurtzite In0.5Ga0.5 N Alloys with GGA-PBEsol Method
In present work, we have calculated the electronic properties including density of states and electron density for GaN, InN and InxGa1-xN in wurtzite phase for x=0.5. The study is based on density functional theory with full potential linearized augmented plane wave method by generalized gradient approximation for calculating electronic properties. In this report we concluded that InxGa1-xN ba...
متن کاملInvestigation of the mechanical properties and microstructure of the Ti-6Al-4V to Al2024 joint fabricated by successive- stage transient liquid phase (S-TLP) method
The aim of this study is investigation of TLP variables on microstructure and mechanical properties of Al2024 to Ti-6Al-4V bonding for TLP joint. For this purpose, the sheets were prepared with dimension of 130×32×3 mm from Ti-6Al-4V and Al2024 alloys and 50µm thick Sn-5.3Ag-4.2Bi foil as interlayer. Sn-5.3Ag-4.2Bi foil prepared with dimension of 32×25 mm. Two alloys was joint together by proce...
متن کاملInvestigation of the mechanical properties and microstructure of the Ti-6Al-4V to Al2024 joint fabricated by successive- stage transient liquid phase (S-TLP) method
The aim of this study is investigation of TLP variables on microstructure and mechanical properties of Al2024 to Ti-6Al-4V bonding for TLP joint. For this purpose, the sheets were prepared with dimension of 130×32×3 mm from Ti-6Al-4V and Al2024 alloys and 50µm thick Sn-5.3Ag-4.2Bi foil as interlayer. Sn-5.3Ag-4.2Bi foil prepared with dimension of 32×25 mm. Two alloys was joint together by proce...
متن کاملEntropy and Diffuse Scattering: Comparison of NbTiVZr and CrMoNbV
The chemical disorder intrinsic to high entropy alloys inevitably creates diffuse scattering in their x-ray or neutron diffraction patterns. Through first principles hybrid Monte Carlo/molecular dynamics simulations of two BCC high entropy alloy forming compounds, CrMoNbV and NbTiVZr, we identify the contributions of chemical disorder, atomic size and thermal fluctuations to the diffuse scatter...
متن کامل